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Preface 

This volume contains standard analyses used to verify that the model 
implementation accurately represents the developer's conceptual description and 
specification. Verification provides evidence that the model is solved correctly and 
quantify uncertainties and errors in the computational model. 

Our Goals 

 Identify and minimize uncertainties and errors in the computational model 

 Increase confidence in the quantitative predictive capability of the 
computational model 

Our Strategy 

 Reduce computational model uncertainties and errors 

 Reduce systematic errors in hardware 

 Reduce incomplete physical characterization 

Verification of the problem does not directly make a claim about the accuracy of a 
prediction as the computational models are easily misused whether intentionally or 
unintentionally. The user must be aware of the following: 

 How closely related are the conditions of the prediction and specific cases in 
validation database? 

 How well is the physics and characteristics of the problem understood? 

Verified and validated models can be used for assessing behavior of components or 
complete systems, with the understanding that the environmental influences cannot 
all be taken into the account prior to operation but with a good model, their influence 
on system behavior can be assessed as need be. 
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3-D Cantilever Beam deflection 

To verify and validate: point load, beam element, tetrahedral element, elastic model. 

 

Modulus of elasticity  : E = 1000000 kPa 

Height of cross section area : h = 1 m 

Poisson’s ratio  :  = 0.3 

Cross sectional area  : A = h  b = 1 m2 

Second moment of area : I = b  h3/12 = 0.0833333 m4 

Length of beam  : L = 10 m  

Applied nodal load  : P=10 kN 

 

1.1   Nodal loading on Euler-Bernoulli beam elements 

Theoretical solution for beam bending due to effect of normal stresses (Beer and 
Johnston, 1992): 
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Figure 1-1 Deflection of an Euler-Bernoulli beam under a point load 
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1.2   Beam with 11 integration points Tetrahedral elements 

Given the aspect ratio of the beam is 1:10, the cantilever beam is remodelled with 
tetrahedral elements to account for the extra rotation due to the transverse shear 
effects. Theoretical solution for beam bending due to effect of normal and shearing 
stresses (Beer and Johnston, 1992): 
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Figure 1-2 Deflection of a Timoshenko beam under a point load 

 

Reference: 

Beer, F. P. and Johnston, E.R. Jr., Mechanics of Material (2nd Edn), McGraw Hill 
International (UK) Limited, Berkshire, 1992. 
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Strip load on elastic Gibson soil 

To verify and validate: plane strain, elastic model, boundary fixities 

 

The analytical solution is exact only for an infinite half-space whereas GeoFEA 
solution is obtained for soil domain with finite depth. In this current problem, the 
shear modulus of the soil increases linearly with depth, thus the effect of finite 
thickness is expected to diminish rapidly if the mesh boundary is sufficiently far. 

Four meshes of different sizes is used to verify the convergence of the results 
towards analytical solution. The exact solution gives a settlement of 0.05m (Gibson, 
1967) at the surface below the centre of the distributed load. 
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Figure 2-1 Flexible strip footing on an elastic Gibson soil 

Figure 2-2 Problem domain sizes considered for finite element analyses 
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Figure 2-3 Vertical settlement from finite element analyses for Gibson_a – 7m×4m 

 

 

Figure 2-4 Vertical settlement from finite element analyses for Gibson_b – 14m×8m 
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Figure 2-5 Vertical settlement from finite element analyses for Gibson_c – 21m×12m 

 

 

Figure 2-6 Vertical settlement from finite element analyses for Gibson_d – 28m×16m 
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The further the boundary of the mesh from the strip loading, the closer is the central 
settlement to the analytical solution of 0.05m. Since the soil layer is of finite 
thickness, the settlement obtained from the analyses should not exceed 0.05m. This 
problem also illustrates the importance of setting appropriate vertical and lateral 
extents of the finite element mesh. This will depend on the problem being analysed, 
the constitutive models employed and which facet of behaviour is under 
investigation. 

 

Reference 

[1] Gibson, R. E. Some Results Concerning Displacements and Stresses in a Non-
Homogeneous Elastic Half-Space, Geotechnique 17(1), 58–67, 1967. 
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1-D consolidation 

To verify and validate: consolidation, elastic model, linear strain triangle element, 
pore-pressure fixities, distributed line loading 

 

When a soil layer is subjected to an external loading, immediately the water will 
alone sustain this load and cause the build-up the excessive pore water pressure. In 
the progress of the flow of the water to the surface, the load is gradually transferred 
to the soil skeleton and the excessive pore water pressure will dissipate. At the same 
time, the settlement of the soil layer occurs. As settlement is usually a major 
concern in geotechnical engineering, this is a key problem in soil mechanics. 

Consider a soil layer composed of an isotropic, homogeneous and saturated 
thermoporoelastic material. The layer has a thickness of, h, in the y direction and of 
infinite extent in the two other directions x and z. The layer is underlain by a rigid and 
impervious base at y = 0. And the top surface at y = h is so perfectly drained that the 
pore pressure is held constant as zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material properties, boundary and loading conditions are modelled after Smith & 
Griffiths (1997). A uniform vertical pressure of 1 kPa is applied on the top surface of 
the soil column as ramped loading. As the bottom of the soil column is modelled as 
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v = -0.043673 
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Figure 3-1 (a) Biot’s consolidation of a rectangular solid in plane strain, (b) Ramp loading 

(a) (b) 
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an undeformable and impermeable layer, both the solid and fluid displacements are 
fixed. The pore pressure is kept constant as zero at the top surface of the soil 
column because of the perfectly drained condition. For the reason of 1D 
consolidation problem, all the lateral movement of the solid and fluid phase are 
suppressed so that the vertical displacement is the only non-zero displacement for 
the intermediate nodes. 

The height of the soil column is 10m. Smith & Griffiths (1997) have used four linear 
strain quadrilateral elements are used to model the horizontal layer. We used one 
hundred and eighty-five linear strain triangle finite elements to model the problem.  

 

Time in seconds 

 17 18 19 20 

    

Figure 3-2 Contour of pore pressures at different time steps 
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Table 3-1 Comparison of displacement and pore pressures at top and bottom nodes of the 
mesh 

Time in 
seconds 

Smith & Griffiths (1997) GeoFEA 9.0 
Percentage 
difference 

Displacements at node 1 

17 -3.966 -3.92093 1.14% 
18 -4.125 -4.08159 1.05% 
19 -4.277 -4.23565 0.97% 
20 -4.424 -4.38382 0.91% 

Pore pressures at node 23 
17 0.9144 0.90186 1.37% 
18 0.8981 0.88605 1.34% 
19 0.8811 0.86964 1.30% 
20 0.8636 0.85278 1.25% 

 

Reference 

[1] Smith IM, Griffiths DV. Programming the Finite Element Method (3rd edn), John 
Wiley: Chichester, 1997. 
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Cryer’s consolidation sphere 

To verify and validate: consolidation, elastic model, pore-pressure fixities, distributed 
surface loading, axisymmetry, 3D tetrahedron 

 

The consolidation of a fluid-saturated porous elastic sphere which is subjected to a 
uniform normal traction q applied to the surface, from which pore fluid can drain 
freely, was first considered by Cryer (1963). He showed that the pore fluid pressure 
in the interior of the sphere jumped by an amount q when the surface traction was 
applied and then continued to increase for some time before it decayed. This 
phenomenon, a rise in interior pore fluid pressure followed by dissipation, during the 
consolidation of a porous elastic body, is called the Mandel-Cryer effect. 

The numerical analysis is conducted following the parameters used by Wong et. al. 
(1998):  

Table 4-1 Parameters used for the finite element analysis 

Effective Young’s modulus, E’ 10 000 kPa 

Poisson Ratio, ν 0.0, 0.33, 0.49, respectively 

unit weight of water, γw 10 kN/m3 

Porous media’s hydraulic conductivity, k 4.91 10-5 m/s 

Radius of Cryer’s sphere, a 1 m 

Surface pressure load, q 100 kPa 

Time, t (s) — 

 

The Cryer’s dimensionless time can be obtained as 

  


  


 

 

'

2 2

(1 )

1 1 2
v

w

C t E k t
T

a a
 

where Cv is consolidation coefficient. 

Cryer (1963) did not investigate the time evolution of the other stress and strain 
components during the consolidation of a sphere. In order to obtain a complete 
understanding of the process of consolidation of a porous elastic sphere, Mason et 
al (1991) analyzed systematically the evolution of stress and strain during the 
consolidation. The analytical series solution for center pore water pressure was 
given in the paper by Mason et al (1991). 
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where  

p : pressure of the fluid in the pores 

t : consolidation time 
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ν : Poisson’s ratio 

q : all-round pressure applied to the enveloped sphere 

xn : contribution to the integral from the poles at non-zero root of the 
equation,   -xn, n = 1,2,3,... (n≠0) 

MATLAB is used to calculate the analytical series solution and truncate the non-
dominant terms in a summation of infinite terms. The total time, incremental time 
and square root of Cryer’s dimensionless time throughout sequential stages, are 
tabulated as follows, 

Table 4-2 Parameters used for the finite element analysis 

Stage Total Time 
Time 

increment 
Cryer time, T  

=0.0 =0.33 =0.49 

1(I) 0.0000000 - - - - 

2(II) 0.0000000 t - - - 

3(III) 0.0033700 0.0033700 0.0128634 0.0156577 0.0532148 

4 0.0067400 0.0033700 0.0181916 0.0221433 0.0752571 

5 0.0115059 0.0047659 0.0237684 0.0289316 0.0983280 

6 0.0162717 0.0047659 0.0282655 0.0344056 0.1169322 

7 0.0230117 0.0067400 0.0336136 0.0409154 0.1390567 

8 0.0297517 0.0067400 0.0382205 0.0465231 0.1581152 

9 0.0392832 0.0095315 0.0439182 0.0534584 0.1816859 

10 0.0488147 0.0095315 0.0489571 0.0595920 0.2025317 

11 0.0622942 0.0134795 0.0553050 0.0673188 0.2287924 

12 0.0757737 0.0134795 0.0609958 0.0742458 0.2523347 

13 0.0948362 0.0190625 0.0682382 0.0830615 0.2822960 

14 0.1138987 0.0190625 0.0747825 0.0910274 0.3093692 

15 0.1408572 0.0269585 0.0831630 0.1012284 0.3440386 

16 0.1678157 0.0269585 0.0907731 0.1104916 0.3755208 

17 0.2059402 0.0381245 0.1005568 0.1224006 0.4159952 

18 0.2440647 0.0381245 0.1094695 0.1332494 0.4528665 

19 0.2979797 0.0539150 0.1209579 0.1472334 0.5003928 

20 0.3518947 0.0539150 0.1314459 0.1599997 0.5437810 

21 0.4281447 0.0762500 0.1449893 0.1764851 0.5998090 

22 0.5043947 0.0762500 0.1573715 0.1915570 0.6510329 

23 0.6122247 0.1078300 0.1733789 0.2110417 0.7172542 

24 0.7200547 0.1078300 0.1880284 0.2288736 0.7778582 

25 0.8725447 0.1524900 0.2069830 0.2519456 0.8562716 

26 1.0250347 0.1524900 0.2243417 0.2730751 0.9280834 

27 1.2406897 0.2156550 0.2468154 0.3004308 1.0210554 

28 1.4563447 0.2156550 0.2674070 0.3254955 1.1062411 

29 1.7613247 0.3049800 0.2940766 0.3579584 1.2165709 

30 2.0663047 0.3049800 0.3185209 0.3877127 1.3176950 

31 2.4976047 0.4313000 0.3501891 0.4262601 1.4487036 

32 2.9289047 0.4313000 0.3792219 0.4615997 1.5688099 

33 3.5388547 0.6099500 0.4168426 0.5073927 1.7244439 

34 4.1488047 0.6099500 0.4513384 0.5493819 1.8671500 
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Stage Total Time 
Time 

increment 
Cryer time, T  

=0.0 =0.33 =0.49 

35 4.8988047 0.7500000 0.4904399 0.5969775 2.0289099 

36 5.6488047 0.7500000 0.5266463 0.6410489 2.1786927 

37 6.3988047 0.7500000 0.5605188 0.6822795 2.3188205 

38 7.1488047 0.7500000 0.5924579 0.7211566 2.4509498 

39 7.8988047 0.7500000 0.6227610 0.7580425 2.5763116 

40 8.6488047 0.7500000 0.6516566 0.7932150 2.6958501 

41 9.3988047 0.7500000 0.6793242 0.8268927 2.8103086 

42 10.1488047 0.7500000 0.7059081 0.8592515 2.9202844 

43 10.8988047 0.7500000 0.7315267 0.8904352 3.0262662 

44 11.6488047 0.7500000 0.7562779 0.9205631 3.1286601 

45 12.3988047 0.7500000 0.7802444 0.9497357 3.2278074 

46 13.1488047 0.7500000 0.8034963 0.9780386 3.3239987 

47 13.8988047 0.7500000 0.8260940 1.0055452 3.4174835 

48 14.6488047 0.7500000 0.8480898 1.0323191 3.5084783 

 

Axisymmetry modeling of Cryer’s consolidation problem 

 Drained surface 

0 ti = 1s Time 

100 

Load 
Pore pressure released 

R = 1m 

Instantaneous 
surface load 

Figure 4-1 (a) Schematic description of the Cryer’s consolidation problem in 
axisymmetric analysis, (b) Ramp loading 

(b) 

(a) 
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Figure 4-2 (a) Finite element mesh used for the axisymmetric analysis, (b) Counter of excess 

pore pressures 
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Figure 4-3 Numerical results (axisymmetric) of excess pore pressures versus analytical 

solutions at different Poisson’s ratios 
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3-D modeling of Cryer’s consolidation problem 

Drained surface 

0 ti = 1s Time 

100 

Load 

Pore pressure released 

R = 1m 

Instantaneous 
surface load 

(a) 

(b) 

Figure 0-4 (a) Schematic description of Cryer’s consolidation in 3-
dimensional space, (b) Ramp loading 
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Figure 4-5 Counters of excess pore pressures at different time steps: (a) at stage 10, (b) at 
stage 20, (c) at stage 30, (d) at stage 40 out of total 47 stages of the analysis 
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Figure 4-6 Numerical results (3-D) of excess pore pressures versus analytical solutions at 

different Poisson’s ratios 
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Cylindrical Hole in an Infinite Space Using 
Mohr-Coulomb Material 

To verify and validate: associated and non-associated flow Mohr-Coulomb model 

 

The problem deals with the determination of stresses and displacements for the 
case of a cylindrical hole in an infinite elasto-plastic medium subjected to in-situ 
stresses. In the two numerical simulations, the far boundaries are situated at a 
distance of ten and twenty hole-diameters from the axis of the hole. The radius, a (a 
= 1.0 m), of the hole is small enough if compared to the length of the cylinder, so that 
plane-strain conditions are applicable. The initial stress state (corresponding to P0 = 
30 MPa) is applied throughout the domain, the pressure inside the hole required in 
the closed-form solution is neglected as the hole is created. The solution chosen for 
presentation was obtained and used to validate the associated and non-associated 
flow Mohr-Coulomb yield condition that was added to the finite element code. 

The Mohr-Coulomb material is assigned with the following properties: 

Modulus of elasticity : E = 6.78 GPa 

Poisson’s ratio : K = 0.21 

Cohesion  : c = 3.45 MPa 

Friction angle  :  = 30° 

Dilation angles : ψ = 0° and 30° 

 

 

 

P0=30MPa 

r 

Figure 5-1 Problem description of a cylindrical hole in an infinite space 
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The analytical solution for this problem may be found in Salençon (1969) and Yu 
(2000). The yield zone radius, R0, can be expressed as 
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In which a is the hole radius, P0 is the absolute value of the in-situ isotropic stress, Pi 
is the pressure inside the hole (in our case, 0 MPa), and 
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The radial stress at the elastic/plastic interface is 
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The stresses in the plastic zone have the form 
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In which r is the distance from the hole’s axis. The stresses in the elastic zone are 
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The displacements in the elastic region, ur, are given as  
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In the plastic region, as 
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In these equations, υ is Poisson's ratio, ψ is the dilation angle, and G is the shear 
modulus. 

The problem is modeled as two-dimensional plane-strain calculation using quarter 
symmetry. The boundary conditions applied to the model are shown below. 

 

Figure 5-2 Finite element mesh used in the plane strain analysis 
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The following figures show the comparisons between GeoFEA results and the 
analytic solution along a radial line. Normalized stresses, -σr/P0, -σθ/P0, and 
normalized displacements,-ur/a are plotted against normalized radius, r/a. 

 

Figure 5-3 Contour of displacement norm after the hole is constructed - associated 
flow model (Radius, r = 10m) 

 

Figure 5-4 Displacement vectors - associated flow model (Radius, r = 10m) 
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Figure 5-5 Stress comparison - associated flow ( = 30°, ψ = 30°) 
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Figure 5-6 Displacement comparison - associated flow ( = 30°, ψ = 30°) 
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Figure 5-7 Stress comparison - non-associated flow ( = 30°, ψ = 0°) 
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Figure 5-8 Displacement comparison - non-associated flow ( = 30°, ψ = 0°) 
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The significance of distance of far boundary away from the hole is clearly illustrated 
in the two simulations. The displacement at the hole approaches to the analytical 
solutions as the radius, r, is increased from 10m to 20m. The additional medium 
beyond the 10m boundary provided the additional buffer for the stress transition 
from the original 30MPa specific as the initial condition. 
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Vol. 4, 1969, 231-236. 

[2] Yu H.S. Cavity Expansion Methods in Geomechanics, Kluwer Academic 
Publishers, 2000. 
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Triaxial Compression Test on a Cam-Clay 
Sample 

To verify and validate: Modified Cam-Clay model, drained and undrained analyses 

 

Conventional drained and undrained triaxial compression tests on Cam-clay soil 
samples are modeled. The stresses and specific volume at the critical state are 
compared with analytical predictions. The responses of both lightly (LOC) and 
heavily (HOC) over-consolidated specimen are considered. This set of problems 
tests the prediction accuracy of the modified Cam-clay model in GeoFEA. The model 
of the sample is a cube with unit dimensions. The following properties of a Cam-clay 
material are assigned to the sample: 

Frictional constant   : M = 1.02 

Slope of normal consolidation line : λ = 0.2 

Slope of elastic swelling line  : k = 0.05 

Poisson’s ratio    : υ = 0.145 

Reference pressure   : P1’ = 1 kPa 

Pre-consolidation pressure   : Pc0’ = 8×P1' and 40×P1' 

Critical state void ratio at P1’  : ecs = 2.216 

 

 

 

 

 

 

 

 

 

 

 

 

Initially, the sample is in a state of isotropic compression corresponding to P0 = 
5P1'and zero excess pore pressure (P0' = P0). The pre-consolidation pressure, Pc0, has 
magnitude of 8×P1' for the lightly over-consolidated case and 40×P1' for the heavily 

P'0 

P'0 

Figure 0-1 Isotropic compression of the soil sample at initial stage 



 

 27 

over-consolidated case. These cases correspond to an over-consolidation ratio R = 
Pc0/P0' of 1.6 and 8 respectively. The Poisson’s ratio is assumed to remain constant 
during the test carried out with constant confining pressure P0 and simulated strain-
controlled platens. Drained and undrained tests are considered. Refer to Wood (1990) 
for a detailed discussion on the Cam-clay plasticity theory.  

In a triaxial test: 

   2x z  

 1y  

     0xy yz zx  

In which σ1 is the axial stress and σ2 is the cell pressure. 

The mean pressure, p, and deviator stress, q, in a conventional triaxial test can be 
expressed as follows. 

   1 2

1
2

3
p  

   1 2q  

Since the cell pressure is kept constant during the process of testing, the total stress 
path in the (p, q) plane is 

  3q p  

 

Drained test 

In drained test, no excess pore pressure is generated, the effective and the total 
stress paths coincide, so 

  0' '
3

q
p P  

Numerical values for p’ and q at the end of the simulation are compared with the 
analytical predictions. The results are presented in  

Table 6-1. 

 

Table 6-1 Comparison of numerical and analytical values of stresses at failure 

 OCR = 1.6 OCR = 8 Analytical 

p 7.573 7.617 7.576 

q 7.719 7.846 7.727 
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Figure 6-2 Effective stress path in stress space for drained test (OCR = 1.6) 
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Figure 6-3 Relation between deviator stress and axial strain for drained test (OCR = 1.6) 
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Figure 6-4 Effective stress path in stress space for drained test (OCR = 8.0) 
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Figure 6-5 Relation between deviator stress and axial strain for drained test (OCR = 8.0) 
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Undrained test 

In an undrained test, which the fluid bulk modulus is much larger than that of the soil 
because the fluid is incompressible, the specific volume V remains constant, equal 
to the initial value V0. 

As long as the stress state lies inside the first yield surface, the path corresponds to 
the straight line, 

 0' 'p P  

The excess pore pressure u is given by 

  'u P P  

  0 ' '
3

q
u P P  

And, at the critical state, 

  0 ' '
3
cr

cr cr

q
u P P  

Numerical values for p’, q, and u at the end of the simulation are compared with the 
analytical predictions. The results are as presented in Table 6-2. 

 

Table 6-2 Comparison of numerical and analytical values of stresses and pore pressure at 
failure 

 
OCR = 1.6 OCR = 8.0 

Numerical Analytical Numerical Analytical 

p’ 4.200 4.229 13.982 14.142 

q 4.284 4.314 14.343 14.425 

u 2.228 2.209 -4.202 -4.334 
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Figure 6-6 Total and effective stress paths in stress space for undrained test (OCR = 1.6) 
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Figure 6-7 Relation between deviator stress and axial strain for undrained test (OCR = 1.6) 
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Figure 6-8 Relation between pore pressure and axial strain for undrained test (OCR = 1.6) 
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Figure 6-9 Total and effective stress paths in stress space for undrained test (OCR = 8.0) 
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Figure 6-10 Relation between deviator stress and axial strain for undrained test (OCR = 8.0) 
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Figure 6-11 Relation between pore pressure and axial strain for undrained test (OCR = 8.0) 
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